Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(2-Hydroxyethyl)hydrazinium(2+) dichloride

Günseli Turgut, ${ }^{\text {a* }}$ Metin Zora, ${ }^{\text {b }}$ Mustafa Odabascoğlu, ${ }^{\text {a }}$ Cem Cüneyt Ersanlı ${ }^{\text {c }}$ and Orhan Büyükgüngör ${ }^{\mathrm{c}}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Middle East Technical University, 06531 Ankara, Turkey, and ${ }^{\text {c }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey
Correspondence e-mail: gturgut@omu.edu.tr

Received 21 December 2004
Accepted 7 March 2005
Online 23 April 2005
The crystal structure of the title compound, $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}^{2+} \cdot 2 \mathrm{Cl}^{-}$, is built up from one 2-hydroxyethylhydrazinium(2+) cation and two Cl^{-}anions. The molecular structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. The crystal structure is stabilized by one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and three $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, and the three-dimensional network of hydrogen bonds stabilizes the crystal packing. All five hydrazinium H atoms are involved in hydrogen bonds to Cl^{-}anions. The $\mathrm{Cl} \cdots \mathrm{H}$ contact distances range from 2.122 (15) to 2.809 (14) \AA.

Comment

Hydrogen bonding plays a key role in molecular recognition and the engineering of organic solids (Desiraju, 1989; Melendez \& Hamilton, 1998). The design of highly specific solid-state compounds is of considerable significance in organic chemistry, due to the important applications of these compounds in the development of new optical, magnetic and electronic systems (Lehn, 1992).

(I)

The structure of the title compound, (I), is presented in Fig. 1, and selected bond distances and angles are given in Table 1. The asymmetric unit contains one protonated 2-hydroxyethylhydrazinium (2+) cation and two Cl^{-}counteranions. Atoms N1 and N2 exhibit approximately ideal tetrahedral geometry, with average angles of 109.45 (13) and $109.48(13)^{\circ}$, respectively.

Hydrogen bonds are abundant in this structure, as might be expected from the structural formula and the liability of amino
groups to act as donors. In fact, five different $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ bonds are found, with $\mathrm{H} \cdots \mathrm{Cl}$ distances ranging from 2.122 (15) to 2.809 (14) Å. The shortest, viz. $\mathrm{N} 2-\mathrm{H} 42 \cdots \mathrm{Cl} 2$ [2.122 (15) \AA], has a nearly linear contact angle [171.1 (13) ${ }^{\circ}$]. According to Balmer et al. (2001), this bond is the strongest among those found for $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ contacts. Table 2 gives details of the hydrogen-bond geometry of (I). The H atoms on N1 and N2, with the exception of H31, have only one hydrogen bond, while atom H 31 forms a three-centre interaction with two Cl atoms. Our investigation shows that the 2-hydroxyethylhydrazinium cation is linked to the two Cl^{-} anions through $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1[\mathrm{O} 1 \cdots \mathrm{Cl} 1=3.0874(7) \AA]$ and $\mathrm{N} 1-\mathrm{H} 31 \cdots \mathrm{Cl} 1[\mathrm{~N} 1 \cdots \mathrm{Cl} 1=3.4104$ (8) \AA] hydrogen bonds, resulting in the formation of cyclic seven-membered hydrogen-bonded rings, and an $\mathrm{N} 2-\mathrm{H} 41 \cdots \mathrm{Cl} 2[\mathrm{~N} 2 \cdots \mathrm{Cl} 2=$ 3.0701 (8) \AA] hydrogen bond (Fig. 1).

The 2-hydroxyethylhydrazinium(2+) dichloride units are arranged in such a way as to form a two-dimensional network via $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, which develop parallel to the $b c$ plane. There is also another $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interaction, which connects two symmetry-related planar networks (Fig. 2). The $\mathrm{N} 1-\mathrm{H} 31 \cdots \mathrm{O} 1$ interaction builds an approximately zigzag chain, which develops parallel to the c axis (Fig. 3). Importantly, the $\mathrm{N} 1-\mathrm{H} 32 \cdots \mathrm{Cl} 1$ and $\mathrm{N} 2-$

Figure 1
A view of the ionic components of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A packing diagram for (I), with hydrogen bonds indicated by dashed lines.

Figure 3
The zigzag chain parallel to the c axis built up by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions. Cl atoms have been omitted for clarity. [Symmetry codes: (i) $x,-y+\frac{3}{2}$, $z-\frac{1}{2} ;$ (v) $x, \frac{3}{2}-y, \frac{1}{2}+z$.]

Figure 4
The two-dimensional network, including the rings built up by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions. [Symmetry codes: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $1-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $1-x, 1-y,-z$; (iv) $2-x, y-\frac{1}{2},-z+\frac{1}{2}$; (v) x, $\frac{3}{2}-y, \frac{1}{2}+z ;$ (vi) $x, \frac{1}{2}-y, \frac{1}{2}+z$.]

H43...Cl1 interactions link symmetry-related zigzag-like chains to build up a two-dimensional network as a layer, which includes $R_{6}^{6}(20)$ rings (Bernstein et al., 1995) and develops parallel to the $b c$ plane (Fig. 4).

Experimental

HCl (aqueous, $37 \% w / w, 0.93 \mathrm{ml}, 30 \mathrm{mmol}$) was added dropwise to 2-hydroxyethylhydrazine ($1.01 \mathrm{ml}, 15 \mathrm{mmol}$) in ether $(20 \mathrm{ml})$ and the resulting solution was stirred for 15 min at 293 K . Colourless single crystals of (I) were obtained by slow evaporation of the solvent and these crystals were dried in air (m.p. 406-408 K).

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}^{2+} \cdot 2 \mathrm{Cl}^{-}$
$M_{r}=149.02$
Monoclinic, $P 2_{1} / c$
$a=10.2367(9) \AA$
$b=8.4158(6) \AA$
$c=7.5111(7) \AA$
$\beta=103.208(7){ }_{2}^{\circ}$
$V=629.96(9) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.571 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 11440 \\
& \quad \text { reflections } \\
& \theta=2.8-29.4^{\circ} \\
& \mu=0.93 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.54 \times 0.50 \times 0.43 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS-II diffractometer
Rotation method scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.680, T_{\text {max }}=0.735$
11440 measured reflections
1678 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& 1625 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.077 \\
& \theta_{\max }=29.1^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-11 \rightarrow 11 \\
& l=-10 \rightarrow 10
\end{aligned}
$$

Refinement on $\left.F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.050$
$S=1.17$
1678 reflections
104 parameters
All H-atom parameters refined

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

$\mathrm{C} 1-\mathrm{O} 1$	$1.429(2)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.449(2)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.502(2)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$111.20(7)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2$	$110.86(6)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$110.94(7)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$	$0.83(2)$	$2.28(2)$	$3.0874(7)$	$164(2)$
$\mathrm{N} 1-\mathrm{H} 31 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.86(2)$	$1.99(1)$	$2.7257(10)$	$144(1)$
$\mathrm{N} 1-\mathrm{H} 31 \cdots \mathrm{Cl} 1$	$0.86(2)$	$2.81(1)$	$3.4104(8)$	$129(1)$
$\mathrm{N} 1-\mathrm{H} 32 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.94(2)$	$2.19(2)$	$3.0832(8)$	$161(1)$
$\mathrm{N} 2-\mathrm{H} 43 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	$0.87(1)$	$2.25(2)$	$3.0864(8)$	$162(1)$
$\mathrm{N} 2-\mathrm{H} 41 \cdots \mathrm{Cl} 2$	$0.88(2)$	$2.21(2)$	$3.0701(8)$	$164(1)$
$\mathrm{N} 2-\mathrm{H} 42 \cdots \mathrm{Cl} 2^{\mathrm{iv}}$	$0.90(2)$	$2.12(2)$	$3.0098(8)$	$171(1)$

Symmetry codes: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+1,-y+1,-z$; (iv) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$.

All H atoms were located in a difference map and were refined isotropically, with $\mathrm{N}-\mathrm{H}=0.86(2)-0.94$ (2) $\AA, \mathrm{O}-\mathrm{H}=0.83(2) \AA$ and $\mathrm{C}-\mathrm{H}=0.94(2)-0.98(2) \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values in the range 0.015 (3)-0.030 (4) \AA^{2}.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997), CAMERON (Watkin et al., 1993) and PLUTON (Spek, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, for the use of the Stoe IPDS-II

organic compounds

diffractometer (purchased under grant F. 279 of the University Research Fund), and the Scientific and Technical Research Council of Turkey (TBAG-2250) and the Research Board of Middle East Technical University (BAP-2002-01-03-06) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN1076). Services for accessing these data are described at the back of the journal.

References

Balmer, L., Bruton, E. A. \& Sherwoood, P. (2001). Cryst. Growth Des. 1, 277290.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Lehn, J. M. (1992). J. Coord. Chem. 27, 3-6.
Melendez, R. E. \& Hamilton, A. D. (1998). Top. Curr. Chem. 198, 97-129.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1992). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 176-177. Dordrecht: Kluwer Academic Publishers.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1998) PLATON. University of Utrecht, The Netherlands.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

